Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; : 130616, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621596

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a human DNA repair protein. It is a member of the phospholipase D family based on structural similarity. TDP1 is a key enzyme of the repair of stalled topoisomerase 1 (TOP1)-DNA complexes. Previously, with the CRISPR/Cas9 method, we obtained HEK293A cells with a homozygous knockout of the TDP1 gene and used the TDP1 knockout cells as a cellular model for studying mechanisms of action of an anticancer therapy. In the present work, we hypothesized that the TDP1 knockout would alter the expression of DNA repair-related genes. By transcriptomic analysis, we investigated for the first time the effect of the TDP1 gene knockout on genes' expression changes in the human HEK293A cell line. We obtained original data implying a role of TDP1 in other processes besides the repair of the DNA-TOP1 complex. Differentially expressed gene analysis revealed that TDP1 may participate in cell adhesion and communication, spermatogenesis, mitochondrial function, neurodegeneration, a cytokine response, and the MAPK signaling pathway.

2.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391916

RESUMO

Base excision repair (BER) is the predominant pathway for the removal of most forms of hydrolytic, oxidative, and alkylative DNA lesions. The precise functioning of BER is achieved via the regulation of each step by regulatory/accessory proteins, with the most important of them being poly(ADP-ribose) polymerase 1 (PARP1). PARP1's regulatory functions extend to many cellular processes including the regulation of mRNA stability and decay. PARP1 can therefore affect BER both at the level of BER proteins and at the level of their mRNAs. Systematic data on how the PARP1 content affects the activities of key BER proteins and the levels of their mRNAs in human cells are extremely limited. In this study, a CRISPR/Cas9-based technique was used to knock out the PARP1 gene in the human HEK 293FT line. The obtained cell clones with the putative PARP1 deletion were characterized by several approaches including PCR analysis of deletions in genomic DNA, Sanger sequencing of genomic DNA, quantitative PCR analysis of PARP1 mRNA, Western blot analysis of whole-cell-extract (WCE) proteins with anti-PARP1 antibodies, and PAR synthesis in WCEs. A quantitative PCR analysis of mRNAs coding for BER-related proteins-PARP2, uracil DNA glycosylase 2, apurinic/apyrimidinic endonuclease 1, DNA polymerase ß, DNA ligase III, and XRCC1-did not reveal a notable influence of the PARP1 knockout. The corresponding WCE catalytic activities evaluated in parallel did not differ significantly between the mutant and parental cell lines. No noticeable effect of poly(ADP-ribose) synthesis on the activity of the above WCE enzymes was revealed either.


Assuntos
Reparo do DNA , 60562 , Poli(ADP-Ribose) Polimerase-1 , Humanos , Extratos Celulares , Linhagem Celular , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Poli(ADP-Ribose) Polimerase-1/genética
3.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279210

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme and one of the causes of tumor resistance to topoisomerase 1 inhibitors such as topotecan. Inhibitors of this Tdp1 in combination with topotecan may improve the effectiveness of therapy. In this work, we synthesized usnic acid derivatives, which are hybrids of its known derivatives: tumor sensitizers to topotecan. New compounds inhibit Tdp1 in the micromolar and submicromolar concentration range; some of them enhance the effect of topotecan on the metabolic activity of cells of various lines according to the MTT test. One of the new compounds (compound 7) not only sensitizes Krebs-2 and Lewis carcinomas of mice to the action of topotecan, but also normalizes the state of the peripheral blood of mice, which is disturbed in the presence of a tumor. Thus, the synthesized substances may be the prototype of a new class of additional therapy for cancer.


Assuntos
Benzofuranos , Carcinoma , Topotecan , Animais , Camundongos , Topotecan/farmacologia , Topotecan/uso terapêutico , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Esterases
4.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069121

RESUMO

The spectrum of neurodegenerative diseases known today is quite extensive. The complexities of their research and treatment lie not only in their diversity. Even many years of struggle and narrowly focused research on common pathologies such as Alzheimer's, Parkinson's, and other brain diseases have not brought cures for these illnesses. What can be said about orphan diseases? In particular, Huntington's disease (HD), despite affecting a smaller part of the human population, still attracts many researchers. This disorder is known to result from a mutation in the HTT gene, but having this information still does not simplify the task of drug development and studying the mechanisms of disease progression. Nonetheless, the data accumulated over the years and their analysis provide a good basis for further research. Here, we review studies devoted to understanding the mechanisms of HD. We analyze genes and molecular pathways involved in HD pathogenesis to describe the action of repurposed drugs and try to find new therapeutic targets.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Reposicionamento de Medicamentos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Desenvolvimento de Medicamentos , Proteína Huntingtina/genética , Mutação
5.
PLoS One ; 18(11): e0294683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019812

RESUMO

CRISPR/Cas9 system is а powerful gene editing tool based on the RNA-guided cleavage of target DNA. The Cas9 activity can be modulated by proteins involved in DNA damage signalling and repair due to their interaction with double- and single-strand breaks (DSB and SSB, respectively) generated by wild-type Cas9 or Cas9 nickases. Here we address the interplay between Streptococcus pyogenes Cas9 and key DNA repair factors, including poly(ADP-ribose) polymerase 1 (SSB/DSB sensor), its closest homolog poly(ADP-ribose) polymerase 2, Ku antigen (DSB sensor), DNA ligase I (SSB sensor), replication protein A (DNA duplex destabilizer), and Y-box binding protein 1 (RNA/DNA binding protein). None of those significantly affected Cas9 activity, while Cas9 efficiently shielded DSBs and SSBs from their sensors. Poly(ADP-ribosyl)ation of Cas9 detected for poly(ADP-ribose) polymerase 2 had no apparent effect on the activity. In cellulo, Cas9-dependent gene editing was independent of poly(ADP-ribose) polymerase 1. Thus, Cas9 can be regarded as an enzyme mostly orthogonal to the natural regulation of human systems of DNA break sensing and repair.


Assuntos
Sistemas CRISPR-Cas , Poli(ADP-Ribose) Polimerases , Humanos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Reparo do DNA , Dano ao DNA , DNA/genética , DNA/metabolismo , Quebras de DNA , RNA
6.
Genes (Basel) ; 14(10)2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37895279

RESUMO

Tyrosyl-DNA phosphodiesterase 1 and 2 (Tdp1 and Tdp2) are DNA repair enzymes that repair DNA damage caused by various agents, including anticancer drugs. Thus, these enzymes resist anticancer therapy and could be the reason for resistance to such widely used drugs such as topotecan and etoposide. In the present work, we found compounds capable of inhibiting both enzymes among derivatives of (-)-usnic acid. Both (+)- and (-)-enantiomers of compounds act equally effectively against Tdp1 with IC50 values in the range of 0.02-0.2 µM; only (-)-enantiomers inhibited Tdp2 with IC50 values in the range of 6-9 µM. Surprisingly, the compounds protect HEK293FT wild type cells from the cytotoxic effect of etoposide (CC50 3.0-3.9 µM in the presence of compounds and 2.4 µM the presence of DMSO) but potentiate it against Tdp2 knockout cells (CC50 1.2-1.6 µM in the presence of compounds against 2.3 µM in the presence of DMSO). We assume that the sensitizing effect of the compounds in the absence of Tdp2 is associated with the effective inhibition of Tdp1, which could take over the functions of Tdp2.


Assuntos
Antineoplásicos , Proteínas de Ligação a DNA , Proteínas de Ligação a DNA/genética , Etoposídeo , Dimetil Sulfóxido , Diester Fosfórico Hidrolases/genética , Antineoplásicos/farmacologia , Enzimas Reparadoras do DNA
7.
J Pharm Biomed Anal ; 236: 115731, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37741072

RESUMO

We have previously shown that the Tdp1 inhibitor, enamine derivative of usnic acid, the agent OL9-116, enhances the antitumor activity of topotecan. In the present study, we developed and validated LC-MS/MS method for the quantification of OL9-116 in mouse whole blood and studied pharmacokinetics of the agent. The substance OL9-116 was shown to be stable in the whole blood in vitro. Sample preparation included two steps: mixing 10 µL of a blood sample with 10 µL of 0.2 M ZnSO4 aqueous solution, followed by protein precipitation with 100 µL of acetonitrile containing internal standard. Quantification of the compound was performed using SCIEX 6500 QTRAP mass spectrometer in MRM mode following chromatographic separation on a C8 reversed-phase column. The method was validated in terms of selectivity, linearity, accuracy, precision, recovery, and stability of the prepared sample. When the agent OL9-116 was administered intragastrically at a dose of 150 mg/kg, the maximum concentration in the blood (about 5000 ng/mL) was reached after 2-4 h followed by the distribution and elimination of the compound. A study of the antitumor activity of a combination of OL9-116 and topotecan against Lewis lung carcinoma revealed that administration of topotecan 3 h after OL9-116 resulted in the most pronounced antitumor effect compared to simultaneous or individual administration of both compounds.

8.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298106

RESUMO

Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is an important enzyme in the DNA repair system. The ability of the enzyme to repair DNA damage induced by a topoisomerase 1 poison such as the anticancer drug topotecan makes TDP1 a promising target for complex antitumor therapy. In this work, a set of new 5-hydroxycoumarin derivatives containing monoterpene moieties was synthesized. It was shown that most of the conjugates synthesized demonstrated high inhibitory properties against TDP1 with an IC50 in low micromolar or nanomolar ranges. Geraniol derivative 33a was the most potent inhibitor with IC50 130 nM. Docking the ligands to TDP1 predicted a good fit with the catalytic pocket blocking access to it. The conjugates used in non-toxic concentration increased cytotoxicity of topotecan against HeLa cancer cell line but not against conditionally normal HEK 293A cells. Thus, a new structural series of TDP1 inhibitors, which are able to sensitize cancer cells to the topotecan cytotoxic effect has been discovered.


Assuntos
Antineoplásicos , Topotecan , Humanos , Topotecan/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/química , Relação Estrutura-Atividade , Diester Fosfórico Hidrolases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral
9.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982848

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important repair enzyme that removes various covalent adducts from the 3' end of DNA. Particularly, covalent complexes of topoisomerase 1 (TOP1) with DNA stabilized by DNA damage or by various chemical agents are an examples of such adducts. Anticancer drugs such as the TOP1 poisons topotecan and irinotecan are responsible for the stabilization of these complexes. TDP1 neutralizes the effect of these anticancer drugs, eliminating the DNA adducts. Therefore, the inhibition of TDP1 can sensitize tumor cells to the action of TOP1 poisons. This review contains information about methods for determining the TDP1 activity, as well as describing the inhibitors of these enzyme derivatives of natural biologically active substances, such as aminoglycosides, nucleosides, polyphenolic compounds, and terpenoids. Data on the efficiency of combined inhibition of TOP1 and TDP1 in vitro and in vivo are presented.


Assuntos
Antineoplásicos , Produtos Biológicos , Produtos Biológicos/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Enzimas Reparadoras do DNA/genética , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA Topoisomerases Tipo I/metabolismo , Reparo do DNA , DNA
10.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982223

RESUMO

Topoisomerase 1 (TOP1) is an enzyme that regulates DNA topology and is essential for replication, recombination, and other processes. The normal TOP1 catalytic cycle involves the formation of a short-lived covalent complex with the 3' end of DNA (TOP1 cleavage complex, TOP1cc), which can be stabilized, resulting in cell death. This fact substantiates the effectiveness of anticancer drugs-TOP1 poisons, such as topotecan, that block the relegation of DNA and fix TOP1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is able to eliminate TOP1cc. Thus, TDP1 interferes with the action of topotecan. Poly(ADP-ribose) polymerase 1 (PARP1) is a key regulator of many processes in the cell, such as maintaining the integrity of the genome, regulation of the cell cycle, cell death, and others. PARP1 also controls the repair of TOP1cc. We performed a transcriptomic analysis of wild type and PARP1 knockout HEK293A cells treated with topotecan and TDP1 inhibitor OL9-119 alone and in combination. The largest number of differentially expressed genes (DEGs, about 4000 both up- and down-regulated genes) was found in knockout cells. Topotecan and OL9-119 treatment elicited significantly fewer DEGs in WT cells and negligible DEGs in PARP1-KO cells. A significant part of the changes caused by PARP1-KO affected the synthesis and processing of proteins. Differences under the action of treatment with TOP1 or TDP1 inhibitors alone were found in the signaling pathways for the development of cancer, DNA repair, and the proteasome. The drug combination resulted in DEGs in the ribosome, proteasome, spliceosome, and oxidative phosphorylation pathways.


Assuntos
Diester Fosfórico Hidrolases , Topotecan , Sistemas CRISPR-Cas , DNA , Reparo do DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Esterases/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Topotecan/farmacologia , Transcriptoma , Poli(ADP-Ribose) Polimerase-1/metabolismo
11.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835244

RESUMO

Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is a promising target for antitumor therapy; the use of TDP1 inhibitors with a topoisomerase 1 poison such as topotecan is a potential combination therapy. In this work, a novel series of 3,5-disubstituted thiazolidine-2,4-diones was synthesized and tested against TDP1. The screening revealed some active compounds with IC50 values less than 5 µM. Interestingly, compounds 20d and 21d were the most active, with IC50 values in the submicromolar concentration range. None of the compounds showed cytotoxicity against HCT-116 (colon carcinoma) and MRC-5 (human lung fibroblasts) cell lines in the 1-100 µM concentration range. Finally, this class of compounds did not sensitize cancer cells to the cytotoxic effect of topotecan.


Assuntos
Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases , Tiazolidinedionas , Humanos , Modelos Moleculares , Monoterpenos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Topotecan/farmacologia , Tiazolidinedionas/farmacologia
12.
Bioorg Med Chem Lett ; 73: 128909, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35907608

RESUMO

Tyrosyl-DNA phosphodiesterase 1(TDP1) is a promising target for a new therapy in oncological disease as an adjunct to topoisomerase 1 (TOP1) drugs. In this paper, novel thiazolidin-4-one derivatives with a benzyl and monoterpene substituents were synthesized. Compounds with a monoterpene fragment attached via a phenyloxy linker were active against TDP1 with IC50 values in the 1 ÷ 3 µM range, while direct attachment of monoterpene moiety to the thiazolidin-4-one fragment had no activity. Molecular modelling predicted two plausible binding modes of the active compounds both effectively blocking access to the catalytic site of TDP. At non-toxic concentrations the active ligands potentiated the efficacy of the TOP1 poison topotecan in human cervical cancer HeLa cells, but not in non-cancerous HEK293A cells.


Assuntos
Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases , Esterases/metabolismo , Células HeLa , Humanos , Monoterpenos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Relação Estrutura-Atividade
13.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684313

RESUMO

Inhibiting tyrosyl-DNA phosphodiesterase 1 (TDP1) is a promising strategy for increasing the effectiveness of existing antitumor therapy since it can remove the DNA lesions caused by anticancer drugs, which form covalent complexes with topoisomerase 1 (TOP1). Here, new adamantane-monoterpene conjugates with a 1,2,4-triazole or 1,3,4-thiadiazole linker core were synthesized, where (+)-and (-)-campholenic and (+)-camphor derivatives were used as monoterpene fragments. The campholenic derivatives 14a-14b and 15a-b showed activity against TDP1 at a low micromolar range with IC50 ~5-6 µM, whereas camphor-containing compounds 16 and 17 were ineffective. Surprisingly, all the compounds synthesized demonstrated a clear synergy with topotecan, a TOP1 poison, regardless of their ability to inhibit TDP1. These findings imply that different pathways of enhancing topotecan toxicity other than the inhibition of TDP1 can be realized.


Assuntos
Adamantano , Antineoplásicos , Adamantano/farmacologia , Antineoplásicos/farmacologia , Cânfora , Monoterpenos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Topotecan/farmacologia
14.
Molecules ; 27(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458631

RESUMO

Inhibition of human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1) by different chiral lipophilic nucleoside derivatives was studied. New Tdp1 inhibitors were found in the series of the studied compounds with IC50 = 2.7-6.7 µM. It was shown that D-lipophilic nucleoside derivatives manifested higher inhibition activity than their L-analogs, and configuration of the carbohydrate moiety can influence the mechanism of Tdp1 inhibition.


Assuntos
Nucleosídeos , Diester Fosfórico Hidrolases , Humanos , Ligantes , Nucleosídeos/farmacologia , Diester Fosfórico Hidrolases/química
15.
Molecules ; 28(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36615517

RESUMO

The use of cancer chemotherapy sensitizers is a promising approach to induce the effect of clinically used anticancer treatments. One of the interesting targets is Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), a DNA-repair enzyme, that may prevent the action of clinical Topoisomerase 1 (Top1) inhibitors, such as topotecan (Tpc). Tdp1 eliminates covalent Top1-DNA (Top1c) complexes that appear under the action of topotecan and determines the cytotoxic effect of this drug. We hypothesize that Tdp1 inhibition would sensitize cells towards the effect of Tpc. Herein, we report the synthesis and study of lipophilic derivatives of purine nucleosides that efficiently suppress Tdp1 activity, with IC50 values in the 0.3-22.0 µM range. We also showed that this compound class can enhance DNA damage induced by topotecan in vitro by Comet assay on human cell lines HeLa and potentiate the antitumor effect of topotecan in vivo on a mice ascitic Krebs-2 carcinoma model. Thereby, this type of compound may be useful to develop drugs, that sensitize the effect of topotecan and reduce the required dose and, as a result, side effects.


Assuntos
Diester Fosfórico Hidrolases , Topotecan , Animais , Camundongos , Humanos , Topotecan/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Nucleosídeos de Purina , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/farmacologia , Esterases/metabolismo , Dano ao DNA , DNA , DNA Topoisomerases Tipo I/metabolismo
16.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768766

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (TDP1) catalyzes the cleavage of the phosphodiester bond between the tyrosine residue of topoisomerase 1 (TOP1) and the 3' phosphate of DNA in the single-strand break generated by TOP1. TDP1 promotes the cleavage of the stable DNA-TOP1 complexes with the TOP1 inhibitor topotecan, which is a clinically used anticancer drug. This article reports the synthesis and study of usnic acid thioether and sulfoxide derivatives that efficiently suppress TDP1 activity, with IC50 values in the 1.4-25.2 µM range. The structure of the heterocyclic substituent introduced into the dibenzofuran core affects the TDP1 inhibitory efficiency of the compounds. A five-membered heterocyclic fragment was shown to be most pharmacophoric among the others. Sulfoxide derivatives were less cytotoxic than their thioester analogs. We observed an uncompetitive type of inhibition for the four most effective inhibitors of TDP1. The anticancer effect of TOP1 inhibitors can be enhanced by the simultaneous inhibition of PARP1, TDP1, and TDP2. Some of the compounds inhibited not only TDP1 but also TDP2 and/or PARP1, but at significantly higher concentration ranges than TDP1. Leader compound 10a showed promising synergy on HeLa cells in conjunction with the TOP1 inhibitor topotecan.


Assuntos
Benzofuranos/química , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Sulfetos/química , Benzofuranos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/síntese química , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Relação Estrutura-Atividade , Sulfetos/farmacologia , Sulfóxidos/química , Sulfóxidos/farmacologia , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia
17.
Biomolecules ; 11(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34356597

RESUMO

Usnic acid (UA) is a secondary metabolite of lichens that exhibits a wide range of biological activities. Previously, we found that UA derivatives are effective inhibitors of tyrosyl-DNA phosphodiesterase 1 (TDP1). It can remove covalent complex DNA-topoisomerase 1 (TOP1) stabilized by the TOP1 inhibitor topotecan, neutralizing the effect of the drugs. TDP1 removes damage at the 3' end of DNA caused by other anticancer agents. Thus, TDP1 is a promising therapeutic target for the development of drug combinations with topotecan, as well as other drugs for cancer treatment. Ten new UA enamino derivatives with variation in the terpene fragment and substituent of the UA backbone were synthesized and tested as TDP1 inhibitors. Four compounds, 11a-d, had IC50 values in the 0.23-0.40 µM range. Molecular modelling showed that 11a-d, with relatively short aliphatic chains, fit to the important binding domains. The intrinsic cytotoxicity of 11a-d was tested on two human cell lines. The compounds had low cytotoxicity with CC50 ≥ 60 µM for both cell lines. 11a and 11c had high inhibition efficacy and low cytotoxicity, and they enhanced topotecan's cytotoxicity in cancerous HeLa cells but reduced it in the non-cancerous HEK293A cells. This "protective" effect from topotecan on non-cancerous cells requires further investigation.


Assuntos
Benzofuranos/química , Monoterpenos/química , Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases/metabolismo , Benzofuranos/farmacologia , Células HEK293 , Humanos , Monoterpenos/farmacologia , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia
18.
Molecules ; 26(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073771

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a promising target for anticancer therapy due to its ability to counter the effects topoisomerase 1 (Top1) poison, such as topotecan, thus, decreasing their efficacy. Compounds containing adamantane and monoterpenoid residues connected via 1,2,4-triazole or 1,3,4-thiadiazole linkers were synthesized and tested against Tdp1. All the derivatives exhibited inhibition at low micromolar or nanomolar concentrations with the most potent inhibitors having IC50 values in the 0.35-0.57 µM range. The cytotoxicity was determined in the HeLa, HCT-116 and SW837 cancer cell lines; moderate CC50 (µM) values were seen from the mid-teens to no effect at 100 µM. Furthermore, citral derivative 20c, α-pinene-derived compounds 20f, 20g and 25c, and the citronellic acid derivative 25b were found to have a sensitizing effect in conjunction with topotecan in the HeLa cervical cancer and colon adenocarcinoma HCT-116 cell lines. The ligands are predicted to bind in the catalytic pocket of Tdp1 and have favorable physicochemical properties for further development as a potential adjunct therapy with Top1 poisons.


Assuntos
Adamantano/farmacologia , Monoterpenos/química , Diester Fosfórico Hidrolases/efeitos dos fármacos , Adamantano/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Humanos , Ligantes , Espectrometria de Massas , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade
19.
Molecules ; 27(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35011303

RESUMO

A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and 2 (TDP2) enzymes. In addition, 1,2,4- and 1,3,4-oxadiazole derivatives were synthesized to study the linker influence between a para-bromophenyl moiety and the steroid scaffold. The DCA derivatives demonstrated promising inhibitory activity against TDP1 with IC50 in the submicromolar range. Furthermore, the amides and the 1,3,4-oxadiazole derivatives inhibited the TDP2 enzyme but at substantially higher concentration. Tryptamide 5 and para-bromoanilide 8 derivatives containing benzyloxy substituent at the C-3 position and non-substituted hydroxy group at C-12 on the DCA scaffold inhibited both TDP1 and TDP2 as well as enhanced the cytotoxicity of topotecan in non-toxic concentration in vitro. According to molecular modeling, ligand 5 is anchored into the catalytic pocket of TDP1 by one hydrogen bond to the backbone of Gly458 as well as by π-π stacking between the indolyl rings of the ligand and Tyr590, resulting in excellent activity. It can therefore be concluded that these derivatives contribute to the development of specific TDP1 and TDP2 inhibitors for adjuvant therapy against cancer in combination with topoisomerase poisons.


Assuntos
Ácido Desoxicólico/análogos & derivados , Ácido Desoxicólico/química , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/química , Sítios de Ligação , Linhagem Celular , Fenômenos Químicos , Técnicas de Química Sintética , Ácido Desoxicólico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Relação Estrutura-Atividade
20.
Steroids ; 165: 108771, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221302

RESUMO

Para-Bromoanilides of deoxycholic acid with various functional groups on the steroid scaffold were designed as promising tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibitors. Tdp1 is a DNA repair enzyme, involved in removing DNA damage caused by topoisomerase I poisons; an important class of anticancer drugs. Thus, reducing the activity of Tdp1 can increase the efficacy of anticancer drugs in current use. Inhibitory activity in the low micromolar and submicromolar concentrations was observed with 3,12-dimethoxy para-bromoanilide 17 being the most active with an IC50 value of 0.27 µM. The activity of N-methyl para-bromoanilides was 3-4.8 times lower than of the corresponding para-bromoanilides. Increased potency of the ligands was seen with higher molecular weight and log P values. The ligands were evaluated for their cytotoxic potential in a panel of tumor cell lines; all were nontoxic to the A549 pulmonary adenocarcinoma cell line. However, derivatives containing a hydroxyl group at the 12th position were more toxic than their 12-hydroxyl group counterparts (acetoxy-, oxo- and methoxy- group) against HCT-116 human colon and HepG2 hepatocellular carcinomas. In addition, an N-methyl substitution led to an increase in toxicity for the HCT-116 and HepG2 cell lines. The excellent activity as well as low cytotoxicity, derivative 17 can be considered as a lead compound for further development.


Assuntos
Diester Fosfórico Hidrolases , Antineoplásicos , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...